EQ – General Use (Tips/Tricks) (Part 3)

Avid Pro Tools Dyn3 7-band EQ (free plugin)

Understanding the overall structure of the EQ landscape is important to properly EQ individual tracks and to get them to fit nicely in the full mix. There are certain EQs out today that show the frequency band inside the EQ GUI. These can be quite helpful. Many EQs don’t have this feature. In either case, it is important to have a good understanding of essential frequencies for each instrument along with a fuller understanding of the overall spectrum.

If boosting a frequency band (using a bell curve), be conservative. Try to only boost 1, 2, or 3 dB. Don’t do anything crazy like a 6 or 10 dB boost. Also, when boosting, use a wide Q, which is a low Q number. Try starting with 1, or even less than 1. This type of a boost sounds more natural, as if the frequency is really there in the instrument or the recording if the instrument. This is seen below with the MF band using a 2.6 dB boost and a .84 Q setting.

Gentle boost with wide Q setting

Another tip is when cutting, use a narrow bandwidth, high Q setting. This can be seen below with the MF band. Notice the 2.54 Q setting.

EQ cut using narrow, or high Q, setting

We use a narrow bandwidth when cutting, so as to not affect too many frequencies. Usually we cut to take out annoying frequencies. If the bandwidth is too wide (cutting out a lot of frequencies), it will make the instrument sound unnatural.

This next one falls outside the context of our ‘Q’ setting discussion but is a really good idea. Use a HPF (high pass filter) on the low end to cut out unwanted or unneeded frequencies. Many instruments, including voice, don’t use frequencies below 100 Hz. Use a filter to take these out. It will clean up the track or instrument helping it to not sound so muddy.

HPF at 100 Hz

Try setting the frequency around 100 Hz. This will take out many unused or unwanted frequencies making the track “cleaner” sounding.

Starting with these three simple rules will help your tracks and mixes sound better, cleaner (not muddy) and more natural.

As always, Make it a GREAT day!!

Tim

Advertisement

The Different EQ bands and What they mean (part 2)

Dyn3 7-band EQ (Avid Pro Tools free plugin)

If you look toward the bottom of the EQ pictured above, you will notice 5 different bands: 1. LF, low frequency, red; 2. LMF, low-mid frequency, orange; 3. MF, mid frequency, yellow; 4. HMF, high-mid frequency, green; 5. HF, high frequency, blue.

In today’s blog I will talk about these five bands. I want to start with band 1 and 5. These are typically used and referred to as “shelves.” Band 1, low frequencies, is the low shelf, and band 5, high frequencies, is the high shelf.

But these two bands each have two different settings. The small left icon, next to the LF and HF, is called a bell-type EQ. It kind of looks like -o-. This will either boost or cut a section of frequencies set by you with the frequency knob. The ‘Q’ knob will determine how wide or narrow the bell curve will be. A low Q setting will give you a wide band of frequencies, and a high Q will render a narrow band of frequencies. A good rule of thumb is wide when boosting and narrow when cutting.

The typical use for this is to, say, boost the lower frequencies to bring out a kick drum or synth bass. On the high end, with the HF knob, we can boost upper ‘air’ frequencies to make guitars or vocals stand out or sound brighter. Of course, we can also cut in these frequency ranges as well.

The other icon setting is called a ‘shelf.’ This is the more common use for these two bands. Typically we use a boost here (low or high). When boosted, it looks just like a “shelf.” If on the low shelf, we set the frequency knob to 125 Hz, then everything from 125 on down (to 20 Hz) is boosted the same amount. On the high shelf, we might add a shelf for vocals starting at 6 kHz. In this case everything from 6 k up will have a boost. Of course, we can also cut using a shelf, but this happens less often then a boost.

The Q factor is a bit more complicated and will have to be reserved for another post.

Bands 2, 3 and 4 allow for bell curve settings only. These are the same as the bell curves on bands 1 and 5. These are used for low-mid, mid, and high-mid frequencies. There are only three knobs: Frequency, Gain and Q. Frequency, of course, sets the frequency that you want to work with. Gain is volume (loudness) and can be plus (positive) or minus (negative). We might say boost 2 kHz 2 dB (2 dB) which is a positive gain. Or cut 1200 Hz 3 dB (-3 dB) which would be a negative gain.

As stated above, Q determines the amount of frequencies being altered by the EQ.

As always, I hope this helps!

And, HEY! Make it a Great day!

Tim

The Different EQ bands and What they mean

Introduction to an EQ

Throughout my blog series on EQs I am going to refer to the free EQ plugin that comes with Pro Tools, the Digirack EQ III 7-band. First, let’s talk about the input/output LED meters and gain controls (top left of the plugin). This simply shows the input and output signal level running through the EQ. Always check to make sure there is no clipping going on. If on the input or output side the signal is clipping, hitting red, simply turn the respective gain knob down until there is no longer any clipping happening. It is normal to adjust these gain knobs. With the input gain knob is a symbol, Ø. This is the polarity switch “button.” This will invert the phase of the incoming signal. If you don’t know what this is, I will cover it in a later post. It’s a little more advanced, but easy to understand and know when to use. For now, it won’t concern us.

Just beneath the input/output section are two filters. There is a high pass filter and low pass filter (HPF, LPF).

High Pass Filter
Low Pass Filter

There is also a notch filter. It looks like a line with a ‘V’ in the middle of it. (I couldn’t find a pic of one.)

-∨- (notch filter)

The high pass filter alllows high frequencies to pass through the EQ, while cutting low frequencies, not allowing them to go through the EQ. Conversely, the low pass filter allows low frequencies to pass through and cuts high frequencies. The notch filter takes a small section of audio and makes a deep cut (-12 dB or more). It takes a “notch” out of a small section of audio frequencies. The frequency can be set by the user. One use for the notch filter is for plosives on a vocal track. When a vocalist pops, say a ‘p,’ set the notch filter at 100 Hz. It should diminish it greatly or make it go away completely. You may have to sweep the EQ up or down a little to take care of it.

The two filters each have an “IN” button to engage them. They will light up blue when engaged. The frequency, of course, can be set to whatever you want.

Lastly, there is a setting that is used for the HPF/LPFs that tells the filter how steep of a cutoff you want. If we are allowing high frequencies to pass through and cut out low frequencies, how strong do we want to cut off those low frequencies? The slope is set per octave. The setting choices are 6 dB per octave, 12 dB/oct, 18 dB/oct, and 24 dB/oct. As an example, let’s say I set a high pass filter at 200 Hz, with a 12 dB/octave slope. What this means is that only frequencies above 200 Hz will pass through the EQ (and anything further in the signal chain), and frequencies one octave down (100 Hz, remember from my previous post?), will be 12 dB quieter. Another octave down, 50 Hz it will be another 12 dB quieter. There are times we want a steep cutoff, like 24 dB/octave and other times when we might want 6 dB/octave.

Look on the left side of the GUI window, which shows the graphic interface. There are small numbers. On the center line is 0. This is where all EQ bands start. In out example, since we’re cutting at 200 Hz, at 100 Hz the downward slope will be at -12 dB. At 50 Hz it will be -24 dB.

I hope this hasn’t been too confusing. Try experimenting with these filters on a mix you’re working on. Keep your ears open when doing this. You can even experiment on a piano or acoustic guitar track. Set the HPF up higher, like 400, 500 Hz. Change the different octave settings. You should hear what’s happening.

As always,

Make it a GREAT day!

Tim

EQ Overview and Introduction

How to use an EQ

In the next series of blog posts, I’m going to go through EQ, or equalization. I will talk about why we use it, and when and how to use it. I think EQ is easier to understand than compression (my last series of blog posts), but when I see EQs added by young producers and engineers, I realize they are just as lost using EQ as a compressor. Partly, this is because they don’t understand frequencies.

In this blog I am going to start with an overview. I think to understand EQ and use it properly, one must understand frequencies, our ear’s perception to frequencies, the frequency spectrum (or range), and frequency specifics of individual instruments.

To start with, the ear hears 20 Hz to 20,000 Hz (or 20 kHz). This is, of course, ideal, but starts to become less (mostly on the high end), soon after we’re born. If you’re serious about a career in music, it would serve you well to NOT listen to loud sources for very long. Personally, I wear ear protection when using my leaf blower and shop vac!

If you think about an acoustic piano, the lowest note is A0, 27.50 Hz, and the highest note is C8, 4186 Hz. I bring this up because I think it helps us equate pitch with frequency. Next chance you get, go play specific notes on a piano (acoustic or digital), and then consult a chart as to the frequency of that note. For instance “middle” C is 262 Hz. A440 (the A just above middle C) is 440 Hz.

Do you know what an octave is? An octave, at least on a piano, is from, say, middle C up or down to the next C. This happens to be 8 white keys, thus octave. Using octaves, the frequency either doubles (up an octave) or halves (down an octave). So middle C (C4), 262 Hz, up an octave goes to C5, 523 Hz. (Technically, C4 is 261.63 and C5 is 523.25 Hz.) The A above middle C, A4 is 440 Hz. Up an octave is 880, down an octave is 220. Down another octave is 110, then 55, then 27.50, the lowest note on the piano. All instruments, of course, can go up or down octaves at a time.

The lowest note on a guitar is E2, 82 Hz. Guess what a bass guitar’s lowest note is? One octave down, 41 Hz. This is important. For one reason, when EQing either of these instruments, I know there is no useable information below those frequencies, so I will use a high pass filter set just below those frequencies. This helps to clean up the sound of these instruments, make them less muddy.

The frequency spectrum (20 Hz – 20 kHz) is broken into ten octaves:

  1. 20 – 40
  2. 40 – 80
  3. 80 – 160
  4. 160 – 320
  5. 320 – 640
  6. 640 – 1280
  7. 1280 – 2560
  8. 2560 = 5120
  9. 5120 – 10, 240
  10. 10,240 – 20, 480

So, the lowest note on a bass guitar, 41 Hz is in octave 2; lowest guitar string is octave 3; middle C on piano is octave 4; A440 is in octave 5. Where do vocals sit? Fullness, for example, is 140 – 440, octave 3 to 5.

A different and more effective way to think about the frequency range is to break it up into five broader ranges:

  1. 20 – 100         Bass (Sub Bass)
  2. 100 – 500       Mid Bass (Upper Bass)
  3. 500 – 2 kHz   Mid Range
  4. 2 k – 8 kHz    Upper Mid Range
  5. 8 k – 20 kHz  High (Treble)

Bass:                           Depth, Power, Thump

Upper Bass:              Warmth, Body, Fullness

Mid Range:               Bang, Nasality, Horn-like, Fullness of high notes

Upper Mid Range:  Presence, Edge, Punch, Brightness, Definition, Excitement

Treble:                        Brilliance, Sizzle, Treble, Crispness, Airiness, Breathiness

As example, electric guitar has too much “edge,” cut in the upper mid region. Vocal sounds a little nasal, cut in mid range area. The overall track needs more power and punch, boost bass region.

————————–

To go deeper, the human ear (and mind) hears and perceives sound differently at different frequencies and levels of loudness. Generally speaking, we are more sensitive to mid range and upper mid range frequencies. The ear is less sensitive to low frequencies at lower volumes, and slightly less sensitive to higher frequencies compared to mid range frequencies at the same volume. Being more sensitive means we hear it easier and more readily.

Another way to say this is at low listening volume, mid range frequencies sound more prominent, while the low and high frequency ranges seem to fall into the background. Conversely, at high listening volumes, the lows and highs sound more prominent, while the mid range seems comparatively softer. Confusing? Yes. But extremely important to understand.

To illustrate – Let’s say you’re working on the EQ of a mix, and as you listen back at low levels, you think the lows and highs could use a boost. So you boost them, and it sounds great. The next day you listen back at a high volume, and notice the lows and highs are too loud, so you cut them back down some. Sound familiar? This is the Equal Loudness Contour effect.

There are two different charts one could consult to dig deeper into this important, albeit nerdy and technical subject – Fletcher-Munson Curves and Equal Loudness Contour. There are many articles available online regarding these two subjects, so I will not get into them. BUT, it is extremely important to realize how important these affect your work as an audio professional!

I went a little more in depth than normal in this post, but I hope it helps you to understand what is involved when learning to become an successful producer or audio engineer.

Peace –

And, HEY! Make it a GREAT day!!

Tim